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OVER  INCIDENCE  MATRICES* 

A    Charne«' 

I'mrdur   Iniirrtil*   and  Sorthwrtttrn   trmrr,ity 

and 

W    W   Cooper* 

^      C.arntiiit   ln$titult   of  Trchnntofy 

INTRODUCTION 
Problems Involving network analysis arise in many industrial contexts.   For example, 

interest often attaches to methods for characterizing the behavior of firewater safety systems 
in refinery operation».   Flows and resulting pressures need to be ascertained under various 

patterns of input and withdrawal.   Under certain conditions staadsrd approaches such as Hardy 
Cross1 methods and extensions of the usual Gausa-fieWtf techniques, have been found difficult 
or impossible to apply in anaiyring such systems.   The nonlinear character of the branch head 
losses may cause lack of convergence of the solutions or require recourse to supplementary 

analyses of a complicated character. 
«Certain kinds of network pioblem« !-*ve proved amenable to Uie usual ^ormuUV.ons of 

linear programming/" Her» H 1« pTrpwned-trT-atftize a «wiewhat different appföSChJCnöftler to 
provide a more general method. 4 attack and to in mm, mefewr. fcM»wvy- wW*M» pr«wides' 
access to the methods 4«»*»er*b»dhrfoj for treüiing rmnlincar problems as well.   The essentiai 
ideas are as follows:   (1) rcsUtcment of the original problem In terms of minimizing a sepa- 
rable convex^functionai subject to a syntem of linear equations expressing the conservation of 
current entering and leaving nodes by branches^Tz) alilizat^on of piecewlse linear functionals 
to secure suitable approximations to the convex functionals;; (3) using the "bounded variables 

techniques*-^ linear programming In order to avoid expanding the number of vectors in an 

^~-     JManuscript received  December 1952  
'The authors are  indcbfeTto   W. P.  Drew» of Esso Research and Engineering Co. and Paul 

Harthorn and Norman J. Driebeck of Creole and Lago Petroleum Co»  ,   re»pectively.   for back- 
ground and adviro. ..... ,   . 

The researchundetlyingthi» paper was undertaken for the project Methodological Aapectg 
of Management Research under contract with The Office of Naval Researcli; Contract Nonr - 
110Ö10517 Pro Jed NR 041 016; report is»ued August   igSV. 

»«»••  [1] 2-See, e.g., W.  Prager,  [9J and the reference» cited therein. 
'By   "«eparable   convex"  function is meant one which is the »urn of convex functions of one 

variable each. 
4l e     it is assumed that leakage«, if any, may be ignored. 
■iCf. [•). 
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"utiW bmrnim and also to avoid expanding 'he number of dl/fercnt r  efficient »eflore which 

require explicit expreealon    The reauJllnR protoJem ta llwrrty converted to a:i equivalent one 
whkrh oiay be called the pwlyguiwu «ppruxlmatlon to convex pr.igraiiiinlng over the Incidence 

matrix^ of a connected network.   Special propertle« are then aecured which «Impllfy analysis 
and representation, arsd provide a baala fci systematic eiaborallcn. 

INODENCE MATSi^ 

In engineering analyses of networks. It Is customary to designate one of the two pos- 
sible directions of flow In a branch as positive.   The current Is then allowed to have either 

positive or negative values.   Posltlvlty and negativity are then respectively associated with 
f!ow in the positive direction or Its opposite. 

Topological analysis utilizes instead the closely related notion of "incidence" of 
branches (or links) on node».   Thus, the convention mzy b« - ^'cted, for example, that a branch 
entering a node, Is positively Incident on that node 3 br-anch leaving a node Is negatively inci- 

dent on it, and a branch which does not meet a node Is njt Incident on It.   The incidences of 

branches on nodes may then be described by an incidence matrix consisting of numbers «.. 

representing the incidence of the Jth branch on the Ith node as follows: 

(1) iy 
1    if branch } is positively incident on node i. 

-1 >"       "      J   " negatively       "        "     "1. 
0     "       "      J   " not  1. 

v 
Since each branch is incident on precisely two nodes each column of ttos matrix will 

contain precisely two nonzero entries—a plus one and a minus one.   If q. designates the cur- 

rent in the J     branch the net Influx of current Into the 1th node Is evidently 

(2) r,   a 

where J ranges over all branches of the network.   If the efflux out of the network at this node 

is Ej then this conservation of current at nodes (Kirchhoff's node law) may be written as 

<3) E ^ qj = Ej,     1-1,1,... 

Thus, to express the conservation conditions, it is necessary only to form the incidence matrix 
column by column. 

BASES OF COLUMN VECTORS FOR AN INCIDENCE MATRIX 

As stated in (1) above, each column vector of such a matrix contains a plus one and a 

minus one and is uniquely associated with a branch of the network.   The plus one corresponds 

to the node at the head of the branch and the minus one corresponds to the node at the tall of 

the branch.   A basis of column vectors of the matrix is a collection of column vectors (or 

branches) such that, (1) every other column vector can be expressed as a linear combination 

of this collection, and (2) the number of vectors in this collection is the least with which this 

task ran be accomplished.   Clearly, a basis must incluae at least one vector incident (posi- 

tively or negatively) on each node of the system.   Otherwise, it would not be possible to express 
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In t*rm« of »h» bant«) a »<vt.»r aaiwiclat^d »llh a branch Incident in tfu»! mid«.   To «prrsa a 

column vwtor (branch or nude pain In terms of the basla. It ta neceaaary onjy to atari with 

the head node of thJ« braix h and trace a path aJr.ntt branchea tM« lated with the baals to the 
tall node of this branch.   The corresponding algebraic process conalsta of adding or subtract- 
In« the basis vectora associated with the branches thus traversed. 

Consider, for example, the process of moving from one branch to another across a 

node.   Both branches arc incident on this node.   If both have the same Incidence, »ubtr/ctlng 

them will give a column vector with precisely one "plus one" and one "minus one" ^ssjclated 
with the two end (or exterior) nodes of these two branches; U the branches are oppo^Uely 
incident on a node, an addition will be performed to attain a vector correspondlr*? to tl e end 

nodes.   Thus, traversal of the path from node to node Is associated with addition and subtrac- 
tion of vectors so that as any particular node In the traversal Is reached the cumulant vector 

has nonzero entries (of opposite sign and unit magnitude) corresponding precisely to the ei d 
nodes of the completed portion of the path. 

The collection of branches corresponding to the oasis can contain no closed path (or 

cycle).   Otherwise It would be possible to express one of the branches in the cycle in term» of 

the others by the process just described.   Every expression containing the vector of this 

branch could then be replaced by an expression not containing It.   The supposed basis would 

then contain more than the minimum number of vectors required and would therefore not be a 
basis. 

A connected system of branches and nodes containing no cycle is, in topology, called a 

"tree."  Thus, a basis for the incidence matrix of a connected network consists of the column 

vectors associated with a tree which contains every node of the network.   An easy method is 
therebv provided both for securing a basis and for expressing all vectors in terms of U. 

DETERMINING THE  "EVALÜATORS" 

The "evaluators"—the W vector6—may be determined In a manner similar to the way 

in which the "row-column numbers" are determined in distribution type models of linear 

programming.7   In the model which Is beirg developed Wj is associated with the ith equation. 

The value of any one such w. may be selected arbitrarily because the system of equations (3) 

has the same degree of linear dependence as the standard distribution model.8   The other u> 

are then quickly determined since each basis branch consists of a node pair and the calculations 

arf Initiated at node 1 and proceed away from it to all the other nodes of the network along the 
appropriate basis branches (hence column vectors). 

EXTREMAL PRINCIPLE AND THE  FUNCTIONAL 

In the case of flow problems to be consldrred here, it is assumed that to each branch ) 
there corresponds a resistance function r, (q.) such that 

6Any «olution of U)TB = c"1", where B la the basis at vhe current iteration. Gee [7). for 
exa rnple. 

'In the following discussion some familiarity with linear programming is asiumed. See, 
p.g.,   [3]  and   [5]  for elaboration. 

^Thi« may be seen from the fact that the number of branches in a basis tree is one less 
than the number of node«. In physical terms this corresponds to the fact that the voltage dif- 
ferences rather than absolute voltages are determined by the currents in a network. 
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!■ a comrex funrflon  .f q..   For example. In the firewater system problem 

rj(q)  ■   '»,  ."«rn  (q) * |q||    ,    k     J 

(5) a 

"I« -in ,qi 

The convex programming problem, or extremal principle, characterizing the network 
now Is 

mln,   E   R. (qj 
J 

(6) subject to 

1 ,HJ; 

L tn qj -«j.    1=  1.2.... 

It may be established0 that any optimal solution to this problem automatically satisfies the 
"head-loss," or Kirchhoff cycle conditions—viz, the algebraic sum of the head-losses around 
any closed loop consisting entirely of current carrying branches is zero.   This principle thus 
achieves an essential simplification of the problem because in arriving at a solution it Is only 
necessary to consider individual branches with the hlglily nonlinear loop conditions being 
transferred to the functional10 In a much less recondite form. 

APPROXIMATION OF THE FUNCTIONAL 
To any desired degree of approximation each R, (q) may be replaced by a piecewise 

linear function so that the total. E  Ry (qJ. may also be approximated.11   The resultli^ problem 

may then be replaced by an equivalent linear programming problem using the bounded variables 
techniques In order (a) to avoid proliferation of the number of vectors in the active basis and 
(b) to avoid Increase in the number of structurally distinct vectors.12 

"Thf authors wish to thank the referre for stimulating i sufficiently general proof of this 
(which will be published elsewhere) based on extending the Kuhn-Tucker theorem for this situa- 
tion. He pointed out that Duffin, Birkhoff, and Diar. required rj(q) continuous and itrlctty 
increasing in their proofs. 

10It should be noted that the objective here is to obtain a simulation and that this is accom- 
pli shi-u by optimization with resulting gains in efficiency for the desired simulation. For mathe- 
matical proofs of thi« principle under heavier restrictions than are necessary, see [10] and 
[11). 

1'Additional research which eliminates the need forthis approximation stepwill be reported 
in a subsequent paper. The method to be reported consists essentially of implicit refinement to 
the limit of the approximation process and of short-hand rules so that no approximation needs 
to be dealt with explicitly. This, of course, replaces the linear iterations with a nonlinear 
counterpart. 

'^See [4] for a general description of this method and others for approximating a nonlinear 
functional by a piecewiae linear one. 
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and further Iri 

(7) 

"j      "J*   ■  qj' ;   < •   "J     " 

v Ai • qi" 

Vjk ^k 

0 - ^j»; Ak' 

Then, the approximating problem to (6) assumes the form '2 

subject to 

(8) 

1 1J '5(Ai-Ai)l- Ei 

0 c A,+k ^ Ak+ 

0 -1 ^jk   Ak" 

v^here 1, j, and k are each assigned their respective ranges. 

METHODS OF COMPUTATION AND ILLUSTRATION 
The method of computation on the network graph may be summarized as follows (the 

analogous steps on a tableau *fJl be clear from the illustration).   One starts with a solution of 

the node conditions admitting only branches which form a basis.   The u. -vector is then calcu- 
lated using the active basis, and from it, the  Z. is simply u^ - V^, where node h is the 
"head" of branch ] and node t is its 'tail" as determined by its orientation.  These are com- 
pared as usual with the c. (in equation (8) the p.^) to determine optimality or nonoptimal it y. 
If nonoptimal the vector to "come in" to the basis is expressed in terms of the active basis 
simply by going from the tail to the head of the come In branch on active basis branches. 
Those branches whose orientation is opposite to this direction of travel will have their "cur- 
rent" Increased in the new solution, those with same orientation will have It decreased.   In 
other words, the special structure of this problem Is used to generate the information neces- 
sary to a simplex (or dual) procedure at each stage rather than using the general algorithm 

and storing additional Information. 
The example of Figure 1 may be used to provide a simple illustration for the computa- 

tional routine to be employed. In this Figure an influx of 10 units is being put into the system 
at node 1 and effluxes of 2, 5, and 3 units, respectively, are being drawn from nodes 5, 7. and 9. 

msa as 
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Figure   1   -  Network Graph 

The coefficients (here constants) for the variables which enter Into the functional are shown 
Inside the diagram opposite each arrowhead. n   A physical analogy for these coefficients Is 
found in the resistances, or hofcil losses, over these branches In the circuit which are here 
assumed to be constants.   The resistances are also assumed to be the same irrespective of the 
direction of flow. '4   Finally the branch 2, 5 is assumed to be characterized by a resistance of 
one up to 4 units of current and a resistance of two for greater tiu rents.  This can be visual- 
ized most easily by inserting two branches between nodes 2 and 5, designating the first as 275, 
to indicate that it Is lliullwl in the anumnt of flow it will admit and the second by 2, 5 to indicate 
the absence of spch an upper bound on the possible values of the fl'iws through this (the latter) 
branch.   The objective then Is to characterize the current flows Oy minimizing the value of the 
functional overall branches of the network, taking account of the fact that 2/5 is limited to a 
capacity of four units, as Indicated by the value [4] alongside Its arrowhead, and that further 
flows along the branch will encounter the increased resistance associated with 2, 5. 

Table 1 contains the corresponding incidence matrix with nodes entered in the stub and 
branches at the head.   Each column Is composed of the values t.. as described in section 2. 
above.   The external influxes and effluxes for the system are noted at the right of the matrix In 
the column labelled "stipulations."  Each row of the matrix then represents an equation which 
Is a Kirchhoff node condition to describe the conservation of current.   At the top of each branch 
is a value, c., to be entered into the functional and drawn from the amounts entered at the 
arrowheads on the branches of Figure 1. 

Computation may proceed by means of either the Table or the Figure.   For purposes of 
exposition, both devices will be used. 

First an active basis is selected. To guarantee that a basis Is, In fact, selected It Is 
necessary, as previously described, only to choose brjinches In such a manner that all nodes 
in the system are attained without loops.   Hence computations may commence by «electing a 

Ulnlhe actual computation», it la advisable to utilize different colors to distinguish between 
these values, the programmed flows and the value» for the   <*■'  vector. 

l*It u/cuid be possible to consider these resistances as different, depending on the direction 
of flow. Uni-directional flow could then be assured by blocking out counter flows with heavy 
resistance penalties. 

ua 
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promliilnK baalN set for the purptme nf minimization    U this set la i.ot optlmaJ. a Herlea of 
«yntemaM«  Iterations will secure such a set In a finite number of stage«. 

Thf baflls thus initially rho^n Is Indicated bv the dots centered on the outside of the 
selected branches    It consists of the following branches:    I. 2; 1   6; 2, 3; 2. 5; 3. 4; 5. fl; 6. 7; 

and 8. 9; a« shown In Figure 1.' '  This set of dots Is repeated directly below Table 1 In the first 

row labelled "nasls Indicators."   It designates the collection of column vectors which constitute 

an active basis.   Immediately below these dots the row labelled "Program" shows the (unique) 

current firms which are readily ascertained from Figure 1 by reference to the branches In the 
basis and the Influxes and effluxes. 

Note that 271 and 2. 5 are linearly dependent.   Hence, at most, one of these vectors may 

enter Into a basis.   The other elements of a basis having been chosen, the total amount of cur- 

rent to flow between nodes 2 and 5 Is uniquely determined.   Since the objective Is minimization, 

the optlmaJ choice consists of filling up each such set of branches In the order of successively 

Increasing c^s.   Thus, the flow of 5 betweenjnodes 2 and 5 la allocated as follows:   First aa 

much as possible of this flow Is allocated to 275.   Whenever such a link Is used to capacity 

with overflow to one of Its parallel links, such as 2. 5. It Is not counted as part of an active 

basis.''    For this reason 2, 5 receives a bar rather than a dot In the row of Table I labelled 

"Basis Indicators," as well as alongside the program value 4 In Figure 1.   The bar (replacing 
the dot) Indicates that this branch Is at capacity (with overflow) and is. therefore, not in the 
basis. 

By virtue of the linear dependence of the Kirchhoff node conditions, exactly eight vectors 

here constitute a basis.   The above method of choosing between 273 and 2, 5 resolves the ques- 
tion ol choice among links Joining the same node pair, only one of which can be in an active 
basis 

To determine whether the programmed amounts are optlmaJ, the methods of linear 

programming are now applied.   Values,   a-,,  are determined, one for each node of the network, 

as follows.17   One such value may be chosen arbitrarily.   Here the first such value, zero, is 

selected at node 1. and entered to the left of this node (under the a- component^ <n Table I.18 

The remaining a- components are now uniquely determined by the condition that each pair of 

values u-j and -.   when multiplied by the corresponding elements of each basis vector and 

summed, must eqi^i tne value, c^.  located at the top of each such vector.   Call the sum z, 

whlcli KMlt* i-ore. algebraically adding each pair of a's so that the condition to be satisfied is 
Zj = Cj.   NoU:.g that zero appears as a^ opposite node 1 and that c12 = 5 it Is apparent that 
Wj - -5.   Similarly, since c16 = 2 it follows that u>6 =   2 in order to obtain w   - u,'. •  1 x o 

+  (-1) (-2) ^ z16 =: clfi = 2.   Next, the value u^ = -8 is determined from w, ' ^ = z23 = c71 = 3 

Since w2 - -5 it is evident that w3 ■ - (5*3), as shown, to achieve the desired equality. !Q 

l^The dot on branch 5.  4 «hould be ignor. d at this  »t«j;e.   It enter» at a iubiequent Iteration 
when i, 4 is eliminated, aa will be explained  -ubsequentl 

l^See [i] or [7], 
^It may be helpful to regard these vah-es as tentative node potentials in terms of which 

the  flow« are determined. 
l^Note thai these value» may also be determined directly from Figure 1. Thus, a value of 

zero is inserted at node 1. When ci2 if subtracted from this amount, the value of k» at node 2 
is secured Similarly, the value -8 for node 3 is obtained by subtracting c,, from wy. and 
so on. "     £3 c 

t^Nota that these values may also be determined directly from Figure 1. Thus, a v?lue of 
r.ero is inserted at node 1. When ci2 5 is subtracted from this amount the value (^ ■ -5 at 
node 2 is secured. Similarly the value u,'3 -8 for node 3 is obtained by subtracting c-,, from 
U'j,   and NC on. *J 
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ContiMilm,' In thl> raahfaM Btlllalm   .niy vert-irs desl^ruted b\ .1 dol 'and tluref.-ri- in UM (> 

UM r»"m;iJni 1 1 In thf left h u-.d sfuh "f T.äu.   1  .irf th.T»'h\ H.'lermhi. 

All vcclorfl In thr artive ba.si.s. therefore, nece.ssarliv tavi  L - r.     0    If the prOfTSB 

Is   >ptln).tl those verturs whlrh .ire not in the active basis h.ive vuJues | 7. j -C| f O21  and 

bounded Vmrintlea, such u 'he value fnr 2, 5. will have values  /. - r    - ö. 

If anv value is located wnlrh d'>es not meet thes»1 condition'-, it Is necessarv to Iterate 

further.   In the present Instance j z54 |     c...   This vector Is therefore brought Into the basis. 

as Indicated by the upward pointing arrow just below the first row of "z vaJues" of Table 1. 

To determine which vector is to be eliminated, recourse may be had to Figure I,   Since 5, 4 Is 

being brought into the basis, the node at 4 can be secured via this rmite.    That Is, the vector 

;>. 4 may be stated in terms of the basis by tracing the unique path along the basis tree either 

from head to tali or tall to head.   Thus, 5. 4 utilizes 5, 2; 2, 3; and 3, 4.   The first Is accorded 

B minus sign as the negative of 2, 5 and the latter are accorded positive signs.   Only the latter 

(the ones accorded positive signs) are considered for purposes of designating the vector to be 

eliminated from the basis when 5, 4 Is Inserted.   By recourse to standard procedures, Including 

known methods of resolving degeneracy.^ the vector 3. 4 Is eliminated from the basis and 5, 4 

Inserted instead. 

Crouslog out th<  programmed value 01 *efo alutm 3, 4 ;uid Inserting it instead at fi, 4, 

all other flows are left undisturbed at their previous vaJues.   Also, the only value of w. which 

requires alteration, la the one at node 4.   Starting with av = -7 and subtracting c-, = 3 from 

this amount, the new value a'4 ■ -10 Is secured to replace the old one of -17, as shown In Fig- 
ure 1. 

The -.ecuiiä row of dots in Table 1 indicates the new basis with the programmed amounts 

entered directly below the dots.   To check for optlmaJlty, all vectors not in the active basis are 

evaluated as before.    The test for optlmaJlty being successfully passed   as indicated by the 

numbers in the  z value row at the bottom of the Table/ ' the problem is solved with the current 

flows as Indicated in the "progrim" row 

The methods for convex progrprmnlng over Incidence matrices here developed, may be 

generalized to what may be called matrices of Incidence type with nonzero entries other than 

t 1,   :-)ptv i'i'-aüy they may be considered as matrices for node condltiOQi which generalize the 

Kirchhoff node conditions in that the current In a particular branch is to be multiplied by a 

number associated with the branch before entry Into the node.   Such extensions are Important, 

foi  iaslomt-. In probleuis of accounting and financial analysis, and arc encountered even in very 

simple cases such as the ones described in [6], the further refinement of these methods^4 to 

the exact functions and involving nonlinear Iteration s eps,2'' is also important for dealing with 

problems of risk and uncertainty.   These topics will be treated In subsequent papers.^ 

ZvF:,c a discussion of the theory underlying these procedures,  ipe [3]. 
blSinCC flows may b<" n either direction, it is m • iry either to use the absolute value of 

8j or else to take account of th; direction of flow. In links such as 2, 3, the direction of flow 
»dered. The ,• which results from a negative flow, is simply the negative i; for 

positive flov;. Thus, it is unnecessary to carry two columns. In either case— positive or nega- 
tive flow—on a capacitated link the true z; must be greater than or equal to the  cor responding 

22see [2]. J 

23}.e.,  |Sj|   < c;   for .ill nonbasi« vectors  and   /• .   for 2,"c/. 
-<S(c Footnote   il, page 2M. supra. 
^K.g.,   A. Charnes   and ■ • . ntin        l   Limit   Methods   in   Mathematical   Pro- 

gramming,"   ONR   Research   Memo.  No.  I,   Systems   R.e8eaT p,   Northwestern University 
(forthcoming 
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